
Self-healing Networks Using ORBIT Testbed
sdmay21-36

Matthew Johnson, Adam Tiedeman, Amber Chin, Parnumart Hanthiradej, Yuin-Choon Ng

Client/Adviser: Professor Mohamed Y Selim

Problem Statement
Current cellular networks will portion out a large amount of
their budget to spend on repairing and resolving network
problems and outages. The current method involves relying
on human expertise to identify, diagnose, and resolve any
issues with the network.

Solution
Our system can utilize an algorithm to detect a full or partial
outage, diagnose the cause, and compensate for the outage.
Using an algorithm to solve these issues will cause minimal
user downtime during an outage while keeping the cost to
maintain the network much low.

Users
With some additional configuration, or self-healing network
can be scaled up to larger networks. Everyday cellular
network users can benefit from the added coverage.

Network Topology

Functional Requirements
- Detect the loss of communication with a base station

and mitigate the effects of the outage so users of the
network do not experience an extended outage

- The central controller should be able to assess the
network state with limited network congestion

- The self-healing process should make sure network
nodes are not overloaded beyond their bandwidth

Non-Functional Requirements
Economical
- We are using the free platform ORBIT

Environmental
- This project should be functional across open-access

networks

Testing

- Testing strategy

Conceptual Design Diagram

Failure detection
- checks for network

connectivity
- initiates failure diagnosis

Failure diagnosis
- Reroute traffic or attempt to

maintain client connection with
available servers

- Execute failure compensation
Failure compensation
- Routing error: central

controller reroute based on
diagnosis

- Total failure: assess clients'
connection loss, command
servers to reach out to client

- After failure is compensated,
resume monitoring

Technical Details
UDP

- UDP sockets are configured with executables that
run on each node to do our self-healing

- The Central Controller gives specific commands
about how to reroute the network to its assigned
servers upon failure

ORBIT

- We use a testbed with 7 network nodes
- These network nodes are configured with our

specific network topology using setup scripts
- The topology is configured using linux routing

commands

The downstream routing failure
here shows a connection being
broken between server 2 and the
broader network (internet). In
order to reconnect client 4, the
central controller will evaluate
available bandwidth from server
3, then connect it back to server
2 and finally to the client 4.

A second scenario is shown
where multiple servers fail.
This demonstrates that our
algorithm is able to search
out any remaining paths and
distribute the remaining
server bandwidth to the
clients.

Engineering Standards

- IEEE 1703-2012 - Local Area Network/Wide Area Network
(LAN/WAN) Node Communication Protocol

- ANSI C12.22 - The American National Standard for Protocol
Specification for Interfacing to Data Communication Networks

- RFC 768 - User Datagram Protocol Standard

Wireless Representation

- Represents the wireless
environment we are trying
to replicate

- Three servers and three
clients all within “wireless
range”

Engineering Constraints

- Our project must be able to run on an ORBIT testbed consisting of
7 network nodes

- Our central controller must be able to quickly assess network state
without flooding the network

- Our wired connections must correspond to our topology to simulate
the wireless network

- We are limited by the setup of the orbit sandbox (speed, interface,
etc.)

Physical Network

- Actual physical
network created on
ORBIT testbed

- Uses ethernet
interface to create
connections between
nodes

